Multisensory spatial interactions: a window onto functional integration in the human brain.
نویسندگان
چکیده
Incoming signals from different sensory modalities are initially processed in separate brain regions. But because these different signals can arise from common events or objects in the external world, integration between them can be useful. Such integration is subject to spatial and temporal constraints, presumably because a common source is more likely for information arising from around the same place and time. This review focuses on recent neuroimaging data concerning spatial aspects of multisensory integration in the human brain. These findings indicate not only that multisensory integration involves anatomical convergence from sensory-specific ('unimodal') cortices into multisensory ('heteromodal') brain areas, but also that multisensory spatial interactions can affect even so-called 'unimodal' brain regions. Such findings call for a revision of traditional assumptions about multisensory processing in the brain.
منابع مشابه
Perceptual learning shapes multisensory causal inference via two distinct mechanisms
To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a de...
متن کاملDistinct Computational Principles Govern Multisensory Integration in Primary Sensory and Association Cortices
Human observers typically integrate sensory signals in a statistically optimal fashion into a coherent percept by weighting them in proportion to their reliabilities. An emerging debate in neuroscience is to which extent multisensory integration emerges already in primary sensory areas or is deferred to higher-order association areas. This fMRI study used multivariate pattern decoding to charac...
متن کاملCrossmodal interaction in speeded responses: time window of integration model.
Saccadic reaction time (SRT) to a visual stimulus tends to be faster when an auditory and/or somatosensory stimulus is presented in close temporal or spatial proximity, even when participants are instructed to ignore the accessory input (focused attention task). The time course of SRT as a function of stimulus onset asynchrony (SOA) is consistent with the time-window-of-integration (TWIN) model...
متن کاملComparisons of cross-modality integration in midbrain and cortex.
Multisensory neurons are abundant in the superior colliculus and anterior ectosylvian cortex of the cat. Despite the fact that these areas receive inputs from different regions, and are likely to be involved in different functional roles, there multisensory neurons have many fundamental similarities. They all have multiple receptive fields, one for each sensory input, and these receptive fields...
متن کاملA Symmetric Approach Elucidates Multisensory Information Integration
Recent advances in neuronal multisensory integration suggest that the five senses do not exist in isolation of each other. Perception, cognition and action are integrated at very early levels of central processing, in a densely-coupled system equipped with multisensory interactions occurring at all temporal and spatial stages. In such a novel framework, a concept from the far-flung branch of to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in neurosciences
دوره 28 5 شماره
صفحات -
تاریخ انتشار 2005